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Abstract—Time synchronization is important for a variety of
applications in wireless networks including scheduling commu-
nication resources, interference avoidance, and data fusion. This
paper analyzes the problem of synchronizing nodes in a time-di-
vision-duplexed wireless network via consensus methods using
only acknowledged message exchanges over existing network
traf�c. The nodes are assumed to communicate synchronization
information randomly and asymmetrically, re�ecting the random
nature of the timing and the source of synchronization informa-
tion gleaned from or embedded in existing network traf�c. The
synchronization method accounts for non-negligible propaga-
tion delays which can be disruptive to consensus techniques. To
characterize both transient and asymptotic consensus behavior,
general results are presented providing necessary and suf�cient
conditions for monotonic mean squared convergence of a distance
from consensus metric at an exponential rate. While the general
results apply to a broad class of random consensus models, two
models are analyzed in detail: i) random asymmetric gossip and
ii) fully connected random broadcast. Bounds are derived for the
steady-state distance from consensus in the presence of estimation
error. Numerical results are also presented verifying the analysis
under different network topologies.

Index Terms—Consensus clock, distributed synchronization,
random asymmetric gossip, random broadcast, wireless networks.

I. INTRODUCTION

S YNCHRONIZATION is the process of establishing a
common notion of time among two or more entities. In

the context of wired and wireless communication networks,
synchronization enables coordination among the nodes in
the network and can facilitate scheduling of communication
resources, interference avoidance, event detection/ordering,
data fusion, and coordinated wake/sleep cycles. Over the last
30 years, a variety of synchronization protocols have been
developed for both wired and wireless networks including
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Network Time Protocol (NTP) [1], Precision Time Protocol
(PTP) [2], the Global Positioning System (GPS) [3], [4], and
several lightweight protocols for sensor networks, e.g. [5]–[13].
Several modern wireless communication standards, e.g. 802.11,
802.15, and 802.16, also use network synchronization for var-
ious functions including time-slotting and power management.
In almost all of these examples, the synchronization process
requires speci�c network structures and a dedicated synchro-
nization protocol, both of which result in undesirable overhead.
More recently, researchers have begun to consider the idea

of achieving network synchronization through consensus tech-
niques, see e.g., [14]–[26]. Rather than synchronizing the nodes
in the network to some external “reference” time as in, e.g., NTP
and PTP, the idea is to allow the nodes in the network to commu-
nicate among themselves and arrive at a common clock rate and
offset. Consensus synchronization is appealing in that it does
not require speci�c network structures and has the potential to
be embedded in existing peer-to-peer network traf�c to reduce
or avoid overhead.
The focus of this paper is on consensus synchronization tech-

niques that can be embedded in existing network traf�c. Since
we assume no dedicated synchronization protocol, the infor-
mation �ow in the network from the perspective of the syn-
chronization function is random and potentially asymmetric.
Random consensus methods for synchronization were consid-
ered in [20], [22], [25] and in a more general consensus con-
text in [27]–[33]. Of this prior work, [22], [25], [30], [31], [33]
speci�cally consider random consensus with asymmetric infor-
mation �ows.
In the case of asymmetric information �ows, since the av-

erage of the states is not preserved, the focus is often on ana-
lyzing a “distance from consensus” metric, which is a measure
of the state displacement from the current average. Given a state

at time , the distance from
consensus at time is de�ned as

(1)

where and is a vector of ones.
In the context of synchronization, the state corresponds to
the drifts and/or offsets of the clocks in the network. It has been
shown that, under certain conditions, the distance from con-
sensus converges almost surely or in a mean squared sense at
an exponential rate, e.g., almost surely
for a given constant [30], [31]. Similar convergence results
for random asymmetric consensus systems are also provided in
[22], [25], [33].



To the best of our knowledge, all of the results for random
consensus systems consider only the asymptotic behavior of the
system as . The transient behavior of consensus systems
is generally not studied. This behavior may be important in some
applications, however. For example, in the context of synchro-
nization, nodes may �rst establish a coarse level of synchroniza-
tion to facilitate time-slotted communication and avoid channel
contention. If the synchronization is then re�ned through con-
sensus techniques and the consensus system has poor transient
behavior, this can lead to increased clock dispersion, timeslot
collisions, and network disruption.
Contributions:
1) To characterize both the transient and asymptotic con-
sensus behavior, we derive necessary and suf�cient
conditions for monotonic mean squared convergence of
the distance from consensus metric for a broad class of
random asymmetric (or symmetric) consensus systems.
Under these conditions, for any state with
we have

(2)

for some where the conditional expectation is per-
formed over the distribution corresponding to the random
information �ows in the network. Under certain assump-
tions on the random information �ows, these conditions
reduce to simple explicit stepsize bounds depending only
on the number of nodes in the network.

2) We develop explicit stepsize bounds for monotonic mean
squared convergence in two speci�c scenarios: (i) random
asymmetric gossip [22], [30], [31] with a single message
exchange in each timeslot and (ii) fully-connected random
broadcast [25] with several message exchanges in each
timeslot. These results are compared to the stepsize bounds
previously developed for general asymptotic convergence
in these scenarios.

3) We describe an explicit two-step synchronization ap-
proach which corrects both drifts and offsets and accounts
for propagation delays. The effect of non-negligible prop-
agation delays on consensus synchronization systems was
considered in [18] and [25] where the approach is to allow
the clock offsets to achieve consensus with a constant
derivative, i.e., a common residual drift, proportional to
the sum of the propagation delays. In this paper, we assume
time-division-duplexed (TDD) communication with bidi-
rectional message exchanges which allows the initiating
node to disambiguate the clock offset from the propagation
delay prior to performing local clock compensation. While
our synchronization system also converges to a common
residual drift due to the asymmetric information �ows, the
residual drift is not a function of the propagation delays.

4) We analyze the steady-state synchronization performance
in the presence of drift and offset estimation errors. The
effect of noise has been studied previously for symmetric
consensus systems in [19], [27], [32]. In this paper, we
leverage our monotonic mean squared convergence results
to develop upper bounds on the steady-state distance from
consensusmetric for symmetric and asymmetric consensus
synchronization systems with drift and offset estimation
errors.

Related Prior Work: While the body of literature on clock
synchronization and consensus is quite large, we summarize
here the most relevant prior work with regards to consensus syn-
chronization with random asymmetric information �ows.
In [22], a proportional-integral (PI) controller is developed

for a random asymmetric gossip consensus synchronization
system in which only one pair of nodes communicate in each
timeslot. The analysis assumes a fully-connected network
with unidirectional messaging, negligible propagation delays,
and equiprobable transmit/receive node pairs. Under these
conditions, necessary and suf�cient conditions on the PI con-
troller adaptation parameter for asymptotic convergence are
developed. In this paper, we analyze a broader class of random
messaging models and provide speci�c results for monotonic
mean squared convergence in the random asymmetric gossip
scenario considered in [22]. Our synchronization mechanism
also accounts for non-negligible propagation delays.
In [25], a random broadcast consensus synchronization

system with asymmetric information �ows and propagation
delays was studied. The synchronization mechanism in [25]
uses unidirectional messaging and it was shown that, if the
stepsize is chosen such that where
is the maximum number of neighbors among all nodes in the
network, the system asymptotically converges to a common
clock with a common residual drift. The residual drift is a
consequence of the initial drifts and the non-negligible prop-
agation delays in the network. The random messaging model
in [25] assumes each node equiprobably transmits or receives
timing information in each timeslot. In this paper, we analyze a
broader class of random messaging models and provide speci�c
results for monotonic mean squared convergence in a fully-con-
nected random broadcast scenario with consensus dynamics
identical to [25]. In this speci�c scenario, our necessary and
suf�cient condition on the stepsize for monotonic mean squared
convergence reduces to whereas [25] speci�es

for asymptotic (not necessarily monotonic)
convergence. We also specify a bidirectional messaging model
whereas [25] uses unidirectional messages. While the use of
bidirectional messages requires additional network resources,
it allows for disambiguation of clock offsets and propagation
delays prior to local clock corrections and allows for a fully-de-
centralized implementation of the synchronization protocol.
In [30], [31], [33], a broad class of random consensus sys-

tems is studied in a general (non-synchronization) context.
Mean squared and almost sure asymptotic convergence results
are developed as discussed previously with [33] incorporating
a random messaging model with temporally correlated link
activations. The analysis in these papers assumes that the linear
consensus dynamics are represented by a stochastic matrix, i.e.,
the elements of the consensus update matrix are non-negative
and the row sums are all equal to one. The convergence results
in [33] further assume these matrices to have strictly positive
diagonals. In this paper, we also develop general convergence
results that apply to a broad class of random asymmetric and
symmetric consensus systems but focus on necessary and
suf�cient conditions for monotonic mean squared convergence.
Somewhat surprisingly, although monotonic mean squared
convergence is stricter than general asymptotic mean squared
convergence, our stepsize condition can be looser than the
stepsize conditions developed in [30], [31]. For example, in



an asymmetric gossip scenario with equiprobable links, our
stepsize condition reduces to whereas [30], [31]
speci�es a stepsize of . As a consequence, we show
that monotonic mean squared convergence can be achieved
with non-stochastic consensus update matrices containing
negative diagonal elements.
The consensus literature also includes several studies of

deterministic consensus algorithms, e.g., [34]–[40]. Under
certain conditions, it has been shown that such algorithms can
exhibit uniform exponential convergence such that, for any
starting time and any initial state ,

for all , where is a constant, , and is
the consensus value. Note that can be larger than one, hence
these results do not necessarily imply that the convergence to the
consensus state is monotonic. These results are also based on the
existence of a deterministic sequence of information �ows and
do not directly translate to a scenario with random information
�ows.
Outline: The rest of the paper is organized as follows. We

present the general consensus model and monotonic mean
squared convergence theorem in Section II. We then introduce
the system model, local clock model, and drift and offset esti-
mators in Section III. Random consensus-based drift and offset
compensation is discussed in Section IV. The convergence be-
havior of this synchronization system with perfect estimates is
analyzed in Section V. An analysis of the steady-state distance
from consensus with non-zero estimation errors is presented
in Section VI. Numerical results are given in Section VII,
followed by conclusions in Section VIII. A proof of the main
theorem is provided in the Appendix.
Notation: Vectors and matrices are denoted by boldface let-

ters. The identity matrix is denoted , and denotes a
length vector of all ones. We use , , and for ex-
pectation, transposition, and Euclidean norm, respectively. Def-
initions are also denoted by . The symmetric and idempotent
matrix is de�ned as

(3)

Finally, for a real symmetric matrix we de�ne

(4)

II. MONOTONIC MEAN SQUARED CONVERGENCE

This section provides general monotonic mean square con-
vergence results for a class of consensus systems that will be
applied in the context of synchronization for the remainder of
the paper. We consider a state vector with random
dynamics governed by

(5)

where is a stepsize parameter and is a
matrix randomly drawn from some �nite set satisfying the

property for all . In the context of syn-
chronization, the state vector corresponds to clock drifts
and/or offsets and the matrices correspond to clock correc-
tions resulting from random interactions among the nodes in the
network. Given the dynamics in (5), we are interested in charac-
terizing the conditions under which the distance from consensus
metric as de�ned in (1) exhibits monotonic mean squared con-
vergence according to (2).
We assume is independent and identically distributed

(i.i.d.) for all and denote

(6)

(7)

We further de�ne the matrix as a matrix com-
posed of orthonormal columns all orthogonal to .

A. General Monotonic Mean Squared Convergence
The following theorem establishes necessary and suf�cient

conditions on the stepsize such that the system (5) exhibits
monotonic mean squared convergence to consensus.
Theorem 1 (General Monotonic Mean Squared Conv.):

Given the distance from consensus metric speci�ed in (1) and
random dynamics speci�ed in (5), there exists such that

(8)

for all such that if and only if

(9)

A proof of this theorem is provided in Appendix A. Note that
the condition implies that , i.e., the
system is not already in a state of consensus at time . If the
system were in consensus at time , then it is straightforward to
see that and for all .
Note that Theorem 1 provides necessary and suf�cient con-

ditions for monotonic mean squared convergence. Hence, these
conditions can be considered suf�cient, but not necessary, for
asymptotic (non-monotonic) mean squared convergence.
Example 1: Consider the dimensional state with

where for , 2. We can calculate

The matrix can be further speci�ed with columns

which results in



For , we see that . Hence for
and we have monotonic mean squared convergence

over this range of . When , and we do not
have monotonic mean squared convergence. This is obvious,
of course, since implies constant dynamics in (5). For

, , and for all .
Hence is the range of stepsizes over which this
system exhibits monotonic mean squared convergence.

B. Exponential Convergence Rate
Since Theorem 1 applies to all such that ,

there exists when (9) is satis�ed such that

Hence, when (9) is satis�ed, the average distance from con-
sensusmetric exhibits an exponential convergence rate from any
�nite initial state and . Since

(10)

the convergence rate is conservative as it assumes that
are all in the direction of the eigenvector corre-

sponding to the worst-case eigenvalue. Hence, the convergence
rate is an upper (worst-case) bound on the convergence
rate of the average distance from consensus metric.

C. Special Monotonic Mean Squared Convergence
The following corollary provides a simple expression for the

range of stepsizes that admit monotonic mean squared conver-
gence for the special case when for some con-
stant and when is positive de�nite. Note that the
latter condition was satis�ed by the example in the previous sec-
tion but the former condition was not satis�ed. These conditions
are satis�ed under certain symmetry conditions on the node in-
teractions, e.g., when the network is balanced and connected as
discussed in Section V. We present this result here in a general
context and specialize it to speci�c synchronization scenarios in
Section V.
Collary 2 (Special Monotonic Mean Squared Conv.): Given

for some constant and positive
de�nite,

if and only if .
Proof: Given for some constant ,

we can write

Since is positive de�nite and , it follows that

if and only if .
In light of Theorem 1, Corollary 2 implies that monotonic

mean squared convergence is achieved if and only if
when the conditions on and are satis�ed.
Example 2: Consider a dimensional state with

where for , 2. We can calculate

Given any orthogonal to , it is straightforward to verify
. Also observe that . Corollary 2 then implies

that this consensus system will exhibit monotonic mean squared
convergence if and only if . Note that for

, the consensus update matrix is
non-stochastic in this example.
While the results in Theorem 1 and Corollary 2 can be applied

to a wide range of consensus problems, the rest of this paper
focuses speci�cally on consensus synchronization with random
asymmetric node interactions.

III. SYSTEM MODEL
We assume a time-slotted wireless network with nodes.

We further assume a general communication model where, in a
given timeslot, a randomly selected set of “initiating” nodes

transmit messages to other nodes in the network.
Each node receives replies from a random (or possibly
deterministic) set of “responding” nodes and
then estimates the relative drifts and/or offsets in these replies
to adjust its local clock. Note that the synchronization informa-
tion �ows from the nodes in to node for each . The
messages and replies are assumed to be TDD.

A. Reference Time and Local Time
The nodes in the network do not possess a common notion

of time. We will use the notation to refer to some notion of
reference time, i.e., the “true” time, in the system. All time-
based quantities such as propagation delays and/or frequencies
are speci�ed in reference time unless otherwise noted.
None of the nodes have knowledge of the reference time .

The local time at node is modeled as

where is a non-stationary random process that captures
the effect of clock drift, �xed local time offset, local oscillator
phase noise, and frequency instability [41].
Over a short interval , a reasonable model of the local clock

offset can be written as [42], [43]

(11)

where is a dimensionless quantity rep-
resenting the nominal relative rate of the clock at node with
respect to the reference time at time , is the local clock
offset at time , and where we have assumed the stochastic
behavior of the oscillator to be negligible. We can also write

where represents the rate deviation from nom-
inal and is bounded by the long-term stability speci�cations of
an oscillator. Even for low cost oscillators, with typ-
ical values being as discussed in [44].

B. Pairwise Drift Estimation
We de�ne the pairwise drift between nodes and as ob-

served at node as



Since nodes derive their symbol rate and carrier frequency from
the same local oscillator that drives the local clock, any message
between a pair of nodes in the network allows for the estimation
of pairwise clock drift at the physical layer through carrier fre-
quency and/or symbol rate offset estimation.
As an example, consider a wireless link with nominal carrier

frequency of . Suppose node initiates a message exchange
and node responds to node by transmitting an unmodulated
carrier to node . The down-mixed
signal at node can be written in the reference timebase as

where is the phase of the propagation channel from node
to node and denotes standard low-pass �ltering. In node
’s timebase, we have

where the approximation results from assumption that
. From the observation , node can use standard frequency
estimation techniques, e.g. [45], to form an estimate of the pair-
wise drift .
Pairwise clock drifts can also be estimated by observing mul-

tiple timestamped messages from another node in the network
[46]. Without restricting ourselves to a particular method for
pairwise drift estimation, we denote the pairwise drift estimate
at node based on the response from node in
timeslot as

where is the pairwise drift estimation error.

C. Pairwise Offset Estimation
The pairwise offset estimators described in this section use

bidirectional message exchanges to disambiguate pairwise
clock offsets from propagation delays. Without this disam-
biguation, propagation delay can lead to bias in the clock
offset estimates and can prevent the consensus metric from
converging to zero [18], [25]. We denote the propagation
delay from node to node as . Since all of the message
exchanges in the system are assumed to be TDD, we assume
reciprocal propagation delays in each link. Basic
electromagnetic principles have long established that channel
reciprocity holds at the antennas when the channel is accessed at
the same frequency in both directions [47]. Channel reciprocity
can also be quite accurate at intermediate-frequency (IF) and/or
baseband if a reciprocal transceiver architecture is used [48]
and can be further improved through transceiver calibration
techniques to remove I/Q imbalance effects [49], [50].
The sender/receiver protocol [7], as shown in Fig. 1, is one

example of how nodes can disambiguate pairwise clock offsets
from propagation delays. Given a packet transmitted by node
in local time , it arrives at node in local time

Fig. 1. Sender/receiver acknowledged message exchange.

. The response from node contains the
local timestamps and and arrives at node at local time

. After receiving the response, node
can compute the pairwise clock offset to node as

where it is assumed that any pairwise drift between nodes and
is negligible.
The timestamp-free synchronization protocol [51] is another

example of how pairwise clock offsets can be estimated and
through acknowledged message exchanges, except through
physical layer characteristics of the transmissions and without
the use of timestamps. Again, without restricting ourselves to a
particular method for pairwise offset estimation, we denote the
pairwise offset estimate at node based on the response
from node in timeslot as

where is the pairwise offset estimation error.

IV. CONSENSUS SYNCHRONIZATION DYNAMICS

This section describes how pairwise drift and offset estimates
can be used to correct local clocks and arrive at consensus for
the clock drifts and offsets. The goal is not to force
and or to achieve “average consensus” where the
global average of the drifts and offsets are preserved over time
[28]. Rather, the goal is to drive the clock drifts and offsets to
common values and across the network, both of which may
differ from the averages in earlier timeslots (this is sometimes
called “alignment” rather than “consensus”, e.g., [15], [18]).
For conceptual simplicity, we describe the network synchro-
nization protocol as a two-step process similar to [16]: (i) drift
compensation and (ii) offset compensation. In practice, both
drift and offset compensation can be performed simultaneously
since pairwise drift estimates can often be inferred “for free”
from physical layer characteristics of normal network traf�c.
Simultaneous drift and offset compensation is considered in
Section VII.

A. Step 1: Drift Compensation
During the drift compensation step, each node that

initiated a message exchange in timeslot uses the pairwise



drift estimates for to adjust its local clock drift.
We de�ne the drift vector at time as

(12)

The pairwise drift estimates at node are then used to apply
the local correction

where is a stepsize parameter and the approximation
discards the insigni�cant terms under the assumption that

. The drift vector update in timeslot is then

where

(13)

Since the sets and are randomly generated in each timeslot,
the drift update vector can be written as

(14)

where is a random matrix drawn
from the �nite set and is the
random pairwise drift estimation error vector.

B. Step 2: Offset Compensation

During the offset compensation step, each node that
initiated a message exchange in timeslot uses the pairwise
offset estimates for to adjust its local clock offset.
We assume that the drifts have previously achieved consensus
such that . The offset vector at time is de�ned as

Note that, in light of (11), in the
absence of offset corrections. The pairwise offset estimates at
node are used to apply the local correction

Using as de�ned in (13), the offset vector update in timeslot
follows as

(15)

where is a random matrix as de�ned previously for drift
compensation and is the random
pairwise offset estimation error vector. Note that the only dif-
ference between offset compensation and drift compensation in
(14) is the common term present in (15). This term, how-
ever, has no effect on the distance from consensus metric in (1).

V. RANDOM ASYMMETRIC MESSAGING MODELS

This section applies the general convergence results from
Section II to the drift and offset consensus synchronization sys-
tems developed Section IV under two different probabilistic as-
sumptions on the initiating/responding node sets and . The
analysis in this section assumes that the estimation errors
and are zero.1 An analysis of the optimal stepsize to max-
imize the convergence rate is also provided in Section V-C.

A. Random Asymmetric Gossip Consensus

In this section, we consider a scenario with a common wire-
less channel for all of the nodes in the network. In each timeslot,
to avoid interference, only one pair of nodes exchange messages
while all other nodes remain silent.
To model the random node interactions in this scenario, we

denote the probability that node initiates themessage exchange
with node as and assume that these probabilities are time-
invariant. Note that and . We can fur-
ther form a matrix with element equal to .
In general we do not assume ; for example,
and corresponds to the case where initiates message
exchanges with node but node never initiates message ex-
changes with node .
The matrix can be speci�ed to encompass a wide range of

network topologies including hierarchical and non-hierarchical
structures. An example of a simple non-hierarchical topology is

for all . This corresponds to the case of a
fully-connected network with equiprobable message exchanges
between any pair of nodes in the network in each timeslot, sim-
ilar to [22]. An example of a simple hierarchical topology for

nodes is

(16)

In this example, node 1 never initiates message exchanges with
the other nodes in the network. Nodes 2 and 3 initiate message
exchanges with node 1 equiprobably, but never exchange mes-
sages with each other.
1The effect of non-zero estimation error is analyzed in Section VI and simu-

lated in Section VII.



Under these assumptions, we have
with as de�ned in (13). Hence, to apply Theorem 1, we can
compute

(17)

where is a column vector containing the row sums of .
Given as de�ned in (3), we can also compute

(18)

where the second equality follows from the fact that is idem-
potent and where is a column vector containing
the sum of the row sums and column sums of . Note that is
not symmetric in general, but is symmetric.
These results show that, in the context of random asymmetric

gossip synchronization, and are simple functions of . In
fact, it is straightforward to verify that the and expressions
in Example 1 in Section II-A correspond to the matrix in (16).
Note that induces a weighted directed graph with vertices

and edges . Edge is present,
i.e., synchronization information �ows from node to node , if

. If the row sums of are equal to the column sums of
, the corresponding graph is balanced. A (weakly) connected

graph that is also balanced is known to be strongly connected
[17]. The following corollary provides an explicit condition on
the stepsize when we have a connected network with the bal-
anced property .
Corollary 3 (Balanced Connected Network Convergence):

Given an asymmetric gossip scenario with a connected graph
and , we have

and is positive de�nite.
Proof: Given a connected network with ,

we have . From (17) we can write

where the second equality uses (18).
We now establish that is strictly positive de�-

nite when the graph is connected. For a weighted directed
graph with adjacency matrix , the degree matrix of
is given by , and the Laplacian matrix is

given by [17]. Hence, is a symmetric

Laplacian matrix for the weighted graph having adjacency
matrix . Symmetric Laplacian matrices are positive
semide�nite, with at least one zero eigenvalue corresponding
to eigenvector . The zero eigenvalue has multiplicity
where is the number of connected components in the graph
[17]. Due to the assumption of connectedness there is
connected component, hence is positive semide�nite with
a single zero eigenvalue corresponding to eigenvector .
The columns of are orthogonal to , so is strictly
positive de�nite since the single eigenvalue equal to zero in
is annihilated by .
Corollary 3 combined with Corollary 2 implies that, in the

context of random asymmetric gossip, balanced connected net-
works exhibit monotonic mean squared convergence if and only
if

(19)

This is a wider range of stepsizes than is usually considered for
random asymmetric gossip [30], [31]. A consequence of this
result is that can take on values larger than one (but less
than and the system will still exhibit monotonic mean
squared convergence. In fact, when , the ma-
trix becomes non-stochastic since it has
at least one diagonal element less than zero. This case is gen-
erally not considered in the consensus literature but, as shown
in Corollary 3, still results in monotonic mean squared conver-
gence of the distance from consensus metric.
Corollary 3 encompasses a wide range of common network

structures including certain ring networks, networks with
symmetric , and fully-connected networks with equiprobable
edges with for all .

B. Fully-Connected Random Broadcast Consensus
In this section, we consider a random broadcast consensus

scenario similar to [25].While [25] speci�es unidirectionalmes-
sages, the resulting consensus dynamics described here are iden-
tical to those in [25] with the only difference being that our
bidirectional message exchanges allow for the removal of prop-
agation delays prior to local clock correction. In the random
broadcast scenario with bidirectional message exchanges, each
node in the network equiprobably and independently decides
whether to initiate a message exchange or to respond to mes-
sages from other initiating nodes. Messages are orthogonalized
in each timeslot to avoid interference. To facilitate analysis, we
assume a fully-connected network such that every responding
node responds to every initiating node, i.e.,

for all . All nodes either initiate or respond to messages.
Note that, unlike the random asymmetric gossip scenario where
one pairwise message occurs in each timeslot, the number of
pairwise message exchanges for fully-connected random broad-
cast consensus is equal to where is the number
of initiating nodes in the timeslot and is binomially distributed
with parameter . The average number of pairwise mes-
sage exchanges per timeslot is for
fully-connected random broadcast consensus. Hence, as demon-
strated in Section VII, we can expect random broadcast con-
sensus synchronization to converge more quickly than asym-



metric gossip at the cost of signi�cantly increased network re-
source requirements.
To analyze the convergence behavior of fully-connected

random broadcast consensus, let be a vector with
th element equal to one if node is an initiator in timeslot and
equal to zero otherwise. Further denote
as the number of responding nodes. It follows that

To compute , it is straightforward to calculate

The remaining term can be calculated by �rst calculating the
conditional expectation

The unconditional expectation then follows as

where the second equality uses the result that is binomially
distributed with parameter . Putting these results together,
we have

Using similar methods, it can be shown that

It is straightforward to see that the conditions of Corollary 2
are satis�ed in the fully-connected random broadcast consensus
scenario with . Hence, monotonic mean squared conver-
gence occurs in this scenario if and only if

(20)

In [25], the maximum step size for asymptotic (not necessarily
monotonic) convergence is speci�ed as where

is the number of neighbors of node . In a fully-connected
network, and the asymptotic convergence condi-
tion in [25] reduces to . Our analysis shows the slightly
tighter condition in (20) is necessary and suf�cient to guarantee
monotonic mean squared convergence in the fully-connected
random broadcast consensus scenario.

C. Optimal Step Size Selection
In the general case, choosing a stepsize to achieve mono-

tonic mean squared convergence requires knowledge of and
to calculate the maximum eigenvalue in (9). In the unbal-

anced random asymmetric gossip scenario, full knowledge of
is required to calculate and . In practice, since we consider
a scenario where the synchronization function is embedded in
existing network traf�c, nodes can estimate (or the locally
observable portions of ) and disseminate these estimates to
facilitate calculation of (9) prior to commencement of the con-
sensus synchronization process. The use of network knowledge
to select an appropriate stepsize parameter is common in con-
sensus techniques. For example, selecting a stepsize to achieve
asymptotic consensus in [15], [25] requires knowledge of the
maximum number of neighbors among all nodes in the network.
Interestingly, for balanced connected random asymmetric

gossip networks, Corollary 3 implies that the stepsize param-
eter can be chosen with no knowledge of . The range of
leading to monotonic mean squared convergence is only

a function of the network size . This is also the case for
fully-connected random broadcast consensus as shown in
Section V-B. For balanced connected random asymmetric
gossip, it is in fact suf�cient to simply select to
ensure monotonic mean squared convergence, i.e., the step size
can be selected without even knowing the number of nodes in
the network.
In networks that admit monotonic mean squared conver-

gence, it is possible to derive from (28) in Appendix A the
value of that provides the largest expected convergence step
in timeslot . Using the general state notation and denoting

as the unique solution to , we can
rewrite the numerator of (28) as

The value of that minimizes is

(21)

which reduces to in the balanced con-
nected random asymmetric gossip scenario since

as shown in Corollary 3. Similarly, for fully-con-
nected broadcast consensus, the optimum stepsize can be
calculated as since as shown
in Section V-B.

D. Discussion
It is worth mentioning that, even with perfect estimates,

random consensus systems do not necessarily improve the
actual distance from consensus metric in each timeslot even
if the conditions for monotonic mean squared convergence
are satis�ed. For example, consider a fully-connected random
asymmetric gossip scenario with nodes and equiprob-
able edge activations such that for all . Corollary
3 applies in this case and the range of necessary and suf�cient
for monotonic mean squared convergence is .
Now suppose with . If edge (3,2) is
activated and , the resulting drift vector at time is
then and . In this



example, even though the stepsize satis�es the requirements of
Corollary 3 and node 2 has become more closely synchronized
with node 3, the actual distance from consensus metric has
become worse. We emphasize that the theorem and corollaries
provide necessary and suf�cient conditions for monotonic
convergence of the average distance from consensus.
Although pairwise drift and offset compensation allow the

nodes in a wireless network to achieve consensus on the drifts
and offsets such that and for all , consensus
techniques can also be used to synchronize to an external source
of reference time if one or more nodes in the network have ac-
cess to reference time. The nodes that have access to an external
source of reference time simply do not adapt their clocks. An
example of this case is the asymmetric random gossip scenario
with matrix given in (16). This forces the other nodes in the
network to adapt to the reference time. Hence, if the conditions
of Theorem 1 are satis�ed, the network will exhibit monotonic
mean squared convergence toward synchronization with an ex-
ternal reference.

VI. ESTIMATION ERROR

This section develops a bound for the distance from con-
sensus metric for large in the presence of non-zero drift and
offset estimation errors. In general, with a �xed stepsize ,
non-zero drift and/or offset estimation errors prevent conver-
gence of to zero [19], [27], [32].
Since the distance from consensus dynamics are identical for

drifts and offsets, our analysis in this section will focus on the
drifts. We assume the drift estimation errors are zero-mean
and independent of and . If is chosen to satisfy the
conditions of Theorem 1, we can write

where and is the convergence rate pa-
rameter according to (10).
For large , if the system has converged, we have

. This implies

(22)

where we have also used the fact that is idempotent.
This expression can be further simpli�ed in the particular case

of random asymmetric gossip consensus if we assume the drift
estimation errors are i.i.d. with variance . In this case, since

, we can write

and it follows from (22) that

(23)

in the random asymmetric gossip scenario. If the conditions for
Corollary 3 hold, we can set with and
write

(24)

This result suggests that the steady-state distance from con-
sensus metric is proportional to and inversely proportional
to . It is important to note, however, that the convergence rate
parameter is an implicit function of and such that
as and/or . The precise effect of and on the
steady-state distance from consensus metric is left as a potential
extension to this work. Also, it may be of interest to consider
the use of a time-varying stepsize, e.g., [27], [32], to potentially
drive the steady-state distance from consensus metric to zero.
For broadcast consensus, note that the th element of

is zero when node is a responder and is equal to
when node is an initiator. Conditioning

on , the total number of i.i.d. noise terms in this
scenario is then . Since is bino-
mially distributed with parameter , we can calculate the
unconditional expectation

and it follows from (22) that

(25)

in the fully-connected random broadcast scenario. A direct com-
parison between (25) and (23) can be misleading since the step-
size in the case of random broadcast is upper bounded by .
If we set with , we can write

which is similar to (24).
Similar results can also be derived for the offset distance

from consensus metric by replacing with . The presence
of signi�cant non-zero residual drift, however, may cause the
offset distance from consensus bound to exceed the upper
bound. These results are numerically veri�ed and the effect of
residual drift is numerically demonstrated in Section VII.

VII. NUMERICAL RESULTS

This section presents numerical results demonstrating con-
vergence of drifts and offsets in networks with random pairwise
message exchanges. The distance from consensus metric(s) are
computed for the drifts and offsets in each timeslot and en-
semble averaged over 5000 runs. In all of the results in this sec-
tion, the initial offsets for were randomly
generated as i.i.d. zero mean Gaussian random variables with
standard deviation 5 ms. To generate a “worst-case” initializa-
tion for the drifts, the initial drifts were determined by �rst com-
puting the eigenvector corresponding to

. Denoting this eigenvector as , we then set



Fig. 2. Average drift distance from consensus metrics for three different
node network scenarios and . Drift compensation

begins at timeslot .

where is a scale factor selected such that the root mean squared
value is 100 .
The results in Fig. 2 show the ensemble averaged drift dis-

tance from consensus metric in three different node
network scenarios:
1) Master-slave random asymmetric gossip network with

for .
2) Fully-connected equiprobable random asymmetric gossip
with for all .

3) Fully-connected random broadcast network.
Note that the �rst scenario requires the use of Theorem 1
whereas the second scenario satis�es the conditions of Corol-
laries 2 and 3. Straightforward calculations result in stepsize
bounds for monotonic mean squared convergence of

scenario 1
scenario 2
scenario 3.

Drift compensation begins at timeslot .
For the master-slave random asymmetric gossip case, we see

that monotonic mean squared convergence occurs only for
, in agreement with Theorem 1. The master-slave network

exhibits general asymptotic mean squared convergence for all
values of tested but convergence is non-monotonic when
. The fully-connected equiprobable random asymmetric case
exhibits monotonic mean squared convergence for all tested
values of , also in agreement with the analysis. The fastest
rate of convergence is achieved in this case when ,
which is close to the optimum stepsize as discussed
in Section V-C. The random broadcast network exhibits rapid
monotonic mean squared convergence for and

and diverges for and , which also agrees
with the analysis. The rapid convergence of the fully-connected
random broadcast consensus system is a consequence of the fact
that there are on average
pairwise message exchanges in each timeslot. This represents
signi�cantly more network resources than required by the single
pairwise message exchange per timeslot of random asymmetric
gossip.

Fig. 3. Average distance from consensus metrics for , 100, 200 node
asymmetric gossip networks with randomly deployed nodes and �xed stepsize

. Solid lines correspond to separate drift and offset compensation.
Dashed lines correspond to simultaneous drift and offset compensation.

For the particular stepsize value where all three sce-
narios exhibit monotonic mean squared convergence, we have

master-slave gossip
equiprobable gossip
random broadcast

which shows the worst-case convergence rates are in agreement
with the results shown in Fig. 2.
As an example of drift and offset consensus behavior for

larger-scale networks, Fig. 3 shows the ensemble averaged dis-
tance from consensus metrics for a randomly deployed random
asymmetric gossip network on a two-dimensional surface with

, 100, 200 nodes and a �xed step size . The
coordinates of each node were uniformly generated on a 100
100 square and the probability was set to be inversely

proportional to the Euclidean distance between nodes and ,
normalized to satisfy . The results in Fig. 3 are
typical for one realization of the node deployments and are not
averaged over the node positions. Since in this ex-
ample, Corollary 3 implies that monotonic mean squared con-
vergence is achieved if and only if . The step-
size value of satis�es this requirement and results in
worst-case convergence rates of

randomly-deployed network
randomly-deployed network
randomly-deployed network.

These results are consistent with the results in Fig. 3 where con-
vergence times increase with the size of the network.
The solid lines in Fig. 3 correspond to the scenario con-

sidered in the analytical results with separate drift and offset
compensation. In this case, drift compensation occurs in
timeslots and offset compensation occurs
in timeslots . Since drift compensation ceases in
timeslot , there is some non-zero residual drift present
when offset compensation commences. In this example, the
presence of non-zero residual drifts for does not
cause divergence of the offsets. Rather, the offsets converge to a
�oor established by the presence of the non-zero residual drifts.



Fig. 4. Average distance from consensusmetrics for a randomly deployed
node asymmetric gossip network with drift and offset estimation errors,

�xed stepsize , and simultaneous drift and offset compensation for
. Horizontal dashed lines correspond to analytical approximations from

Section VI.

This �oor can be lowered by allowing the drift compensation
to achieve a better distance from consensus metric prior to
commencing offset compensation.
The dashed lines in Fig. 3 correspond to a scenario with si-

multaneous drift and offset compensation in timeslots .
While analytical results in Section V were based on the assump-
tion that drift compensation is performed prior to offset com-
pensation, this example shows that simultaneous drift and offset
compensation can improve the performance of the synchroniza-
tion system. In particular, by performing drift compensation for
all , the drift distance from consensus metric for con-
tinues to monotonically converge to zero, consistent with the
analytical results, thus improving the drift synchronization and
lowering the �oor on the offset distance from consensus metric.
Additionally, the offset distance from consensus metric is im-
proved due to the fact that offset compensation is performed
earlier in the synchronization process. The offset distance from
consensus metric, however, is clearly non-monotonic in the ini-
tial adaptation. A convergence analysis of the offset distance
from consensus metric for simultaneous drift and offset com-
pensation is left as a potential extension to this work.
Fig. 4 shows an example of consensus behavior for an asym-

metric gossip system with drift and offset estimation error and
simultaneous drift and offset compensation in timeslots
. Similar to Fig. 3, this example assumes a randomly de-

ployed network on a two-dimensional surface with
nodes, �xed step size , and edge activation probability

inversely proportional to the Euclidean distance between
nodes and . The drift and offset estimation errors were mod-
eled as independent zero-mean Gaussian random variables with

and with standard
deviations and .
The results in Fig. 4 show that the estimation errors do not

have a signi�cant effect on the initial convergence of the drifts
or offsets but, as discussed in Section VI, do establish a non-zero
�oor on the achievable distance from consensus. The horizontal
dashed lines in Fig. 4 correspond to the analytical bounds on the
steady-state distance from consensus as derived in Section VI.

Fig. 5. Average distance from consensus metrics for a node fully-
connected random broadcast network with drift and offset estimation errors,
�xed stepsize , and simultaneous drift and offset compensation for

. Horizontal dashed lines correspond to analytical approximations from
Section VI.

In this example, the bounds are close to the actual steady-state
performance for the drift distance from consensus metric and
also for the offset distance from consensus metric when the
residual drift distance from consensus is relatively small, e.g.,

. The offset distance from consensus metric does
not satisfy the bound when the residual drift distance from con-
sensus is relatively large, e.g., . In this regime, the
residual drift errors prevent the offset distance from consensus
from converging to values below the bound.
Fig. 5 shows a simulation similar to that in Fig. 4 except for a

fully-connected random broadcast systemwith stepsize .
In this example, simultaneous drift and offset compensation oc-
curs in timeslots . As with asymmetric gossip, we see
that the estimation errors do not affect the initial convergence
behavior and the steady-state behavior agrees closely with the
bounds developed in Section VI. As shown previously, conver-
gence occurs muchmore quickly in this case since the fully-con-
nected random broadcast system exchanges many more mes-
sages and uses more network resources in each timeslot than
random asymmetric gossip.

VIII. CONCLUSIONS AND EXTENSIONS
This paper develops necessary and suf�cient conditions

for monotonic mean squared convergence of clock states in
random consensus synchronization systems. Our results sug-
gest that nonhierarchical embedded synchronization techniques
which glean information from existing network traf�c can be
effective for low-overhead network synchronization. Simple
explicit stepsize bounds are developed for random asymmetric
gossip and fully-connected random broadcast scenarios. Nu-
merical examples showing convergence and divergence of the
consensus clock under different network topologies are also
provided.
Potential extensions of this work include: (i) convergence

analysis for simultaneous drift and offset compensation, (ii) the
development of explicit bounds on the stepsize for unbalanced
networks, (iii) an analysis of the precise effects of the stepsize ,
network size , and/or the use of time-varying stepsizes on the



steady-state distance from consensus metric for systems with
drift and offset estimation error, and (iv) an analysis of asym-
metric consensus techniques for nodes with stochastic clock dy-
namics.

APPENDIX A
PROOF OF THEOREM 1

Proof: Given the state vector with dynamics in (5) and
the distance from consensus metric de�ned in (1) with stepsize
. We will show (9) is necessary and suf�cient for (8) to hold
for some and all such that . We denote

. Since , we have

and we can write (8) equivalently as

(26)

for some and all such that . Now, since
, we have , and we can write

with orthogonal to , composed of
orthonormal columns all orthogonal to , and
with .
Using the facts that , , , and

for all , we can write (26) equivalently as

(27)

for some and all . Focusing on
the quadratic form in the numerator, we can de�ne

and write

where and . Hence,
after cancellation of common terms on both sides of the in-
equality in (27), we have that (27) is equivalent to

(28)

for some and all . Through a sequence of
equivalencies, we have shown that (28) is equivalent to (8).
To show (9) is suf�cient such that (28) holds for some

and all , de�ne

and observe that the left hand side of (28) is a Rayleigh quo-
tient and takes on values between the minimum and maximum

eigenvalues of for all . Hence
implies the left hand side of (28) is strictly negative. Therefore,
there exists such that (28) is true for all .
To show the necessity of (9), suppose .

Selecting to be equal to an eigenvector corresponding to
this eigenvalue causes the left hand side of (28) to be equal to

, hence (28) does not hold for any for at least one
.
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